65 research outputs found

    Link level modelling techniques for analysing the configuration of link adaptation algorithms in mobile radio networks

    Get PDF
    The operation of Link Adaptation algorithms is based on channel quality estimates. It is therefore important to analyse the performance of such algorithms with link level models that properly capture the channel conditions and dynamics. Previous research [1] concluded that the use of simple link level models does not give an accurate prediction of the estimated performance of Link Adaptation algorithms. Following this previous work, this paper shows that the link level model considered for the study of Link Adaptation algorithms can also influence the decisions regarding the optimum configuration of the algorithm

    On the importance of using appropriate link-to-system interfaces for the study of link adaptation

    Get PDF
    Link Adaptation is an adaptive radio link technique that selects a transport mode, from a set of predefined modes of varying robustness, depending on the channel quality conditions and dynamics. It is therefore very important, when analysing the performance and operation of Link Adaptation, to properly capture such conditions and dynamics. In this context, this paper investigates the effect that different link-to-system level interfaces have on the study of Link Adaptation, in particular on its throughput performance and associated signalling cost

    Performance and configuration of link adaptation algorithms with mobile speed

    Get PDF
    Link Adaptation is an adaptive radio link technique that selects a transport mode, from a set of predefined modes of varying robustness, depending on the channel quality conditions and dynamics. Previous work has shown the need to adapt the configuration of the Link Adaptation algorithm to certain operating conditions such as the system load. Since the channel quality dynamics are also influenced by the user speed, this paper investigates the impact of the mobile speed on the performance and configuration of Link Adaptation algorithm

    Reputation based selfishness prevention techniques for mobile ad-hoc networks

    Get PDF
    Mobile ad-hoc networks require nodes to cooperate in the relaying of data from source to destination. However, due to their limited resources, selfish nodes may be unwilling to forward packets, which can deteriorate the multi-hop connectivity. Different reputation-based protocols have been proposed to cope with selfishness in mobile ad-hoc networks. These protocols utilize the watchdog detection mechanism to observe the correct relaying of packets, and to compile information about potential selfish nodes. This information is used to prevent the participation of selfish nodes in the establishment of multi-hop routes. Despite its wide use, watchdog tends to overestimate the selfish behavior of nodes due to the effects of radio transmission errors or packet collisions that can be mistaken for intentional packet drops. As a result, the availability of valid multi-hop routes is reduced, and the overall performance deteriorates. This paper proposes and evaluates three detection techniques that improve the ability of selfishness prevention protocols to detect selfish nodes and to increase the number of valid routes.IngenierĂ­a, Industria y ConstrucciĂł

    Optimizing Adaptive Transmission Policies for Wireless Vehicular Communications

    Get PDF
    Abstract—The adoption of wireless vehicular communication technologies would strongly depend on the technologies transmission reliability, required by QoS demanding traffic safety applications, and the system’s scalability as the technology is gradually introduced. To this aim, this work proposes the use of opportunistic transmission policies that dynamically adapt the transmission parameters based on the operating conditions and potential traffic safety risks. The work analyses different configuration proposals with the aim to meeting the strong traffic safety QoS requirements, while maximizing the technology’s robustness and minimising channel congestion, which in turn is crucial to guarantee the future system’s scalability

    Operation and Performance of Vehicular Ad-Hoc Routing Protocols in Realistic Environments

    Get PDF
    Abstract—Vehicle-to-vehicle and vehicle-to-infrastructure wireless communications are currently under development to improve traffic efficiency and safety. Routing protocols enabling multi-hop communications represent a major technology for information dissemination within vehicular ad-hoc networks. The high node’s mobility and propagation conditions experienced by vehicle-to-vehicle communications require a careful routing protocol design to ensure its successful operation and performance under realistic environments. To this aim, this paper analyses the impact and importance of adequately considering physical layer effects to correctly quantify a routing protocol’s performance, and understand its networking operation

    End-to-End V2X Latency Modeling and Analysis in 5G Networks

    Get PDF
    networks provide higher flexibility and improved performance compared to previous cellular technologies. This has raised expectations on the possibility to support advanced Vehicle to Everything (V2X) services using the cellular network via Vehicle-to-Network (V2N) and Vehicle-to-Network-to-Vehicle (V2N2V) connections. The possibility to support critical V2X services using 5G V2N2V or V2N connections depends on their end-to-end (E2E) latency. The E2E latency of V2N2V or V2N connections depends on the particular 5G network deployment, dimensioning and configuration, in addition to the network load. To date, few studies have analyzed the capabilities of V2N2V or V2N connections to support critical V2X services, and most of them focus on the 5G radio access network or consider dedicated 5G pilot deployments under controlled conditions. This paper progresses the state-of-the-art by introducing a novel E2E latency model to quantify the latency of 5G V2N and V2N2V communications. The model includes the latency introduced at the radio, transport, core, Internet, peering points and application server (AS) when vehicles are supported by a single mobile network operator (MNO) and when they are supported by multiple MNOs. The model can quantify the latency experienced when the V2X AS is deployed from the edge of the network (using MEC platforms) to the cloud. Using this model, this study estimates the E2E latency of 5G V2N2V connections for a large variety of possible 5G network deployments and configurations. The analysis helps identify which 5G network deployments and configurations are more suitable to meet V2X latency requirements. To this aim, we consider as case study the cooperative lane change service. The conducted analysis highlights the challenge for centralized network deployments that locate the V2X AS at the cloud to meet the latency requirements of advanced V2X services. Locating the V2X AS closer to the cell edge reduces the latency. However, it requires a higher number of ASs and also a careful dimensioning of the network and its configuration to ensure sufficient network and AS resources are dedicated to serve the V2X traffic

    Self-organising comprehensive handover strategy for multi-tier LTE-advanced heterogeneous networks

    Get PDF
    Long term evolution (LTE)-advanced was introduced as real fourth generation (4G) with its new features and additional functions, satisfying the growing demands of quality and network coverage for the network operators' subscribers. The term muti-tier has also been recently used with respect to the heterogeneity of the network by applying the various subnetwork cooperative systems and functionalities with self-organising capabilities. Using indoor short-range low-power cellular base stations, for example, femtocells, in cooperation with existing long-range macrocells are considered as the key technical challenge of this multi-tier configuration. Furthermore, shortage of network spectrum is a major concern for network operators which forces them to spend additional attentions to overcome the degradation in performance and quality of services in 4G HetNets. This study investigates handover between the different layers of a heterogeneous LTE-advanced system, as a critical attribute to plan the best way of interactive coordination within the network for the proposed HetNet. The proposed comprehensive handover algorithm takes multiple factors in both handover sensing and decision stages, based on signal power reception, resource availability and handover optimisation, as well as prioritisation among macro and femto stations, to obtain maximum signal quality while avoiding unnecessary handovers

    Path loss modeling for vehicular system performance and communicaitons protocols evaluation

    Full text link
    Vehicular communications are receiving considerable attention due to the introduction of the intelligent transportation system (ITS) concept, enabling smart and intelligent driving technologies and applications. To design, evaluate and optimize ITS applications and services oriented to improve vehicular safety, but also non-safety applications based on wireless systems, the knowledge of the propagation channel is vital. In particular, the mean path loss is one of the most important parameters used in the link budget, being a measure of the channel quality and limiting the maximum allowed distance between the transmitter (Tx) and the receiver (Rx). From a narrowband vehicular-to-vehicular (V2V) channel measurement campaign carried out at 5.9 GHz in three different urban environments characterized by high traffic density, this paper analyzes the path loss in terms of the Tx-Rx separation distance and fading statistics. Based on a linear slope model, values for the path loss exponent and the standard deviation of shadowing are reported. We have evaluated the packet error rate (PER) and the maximum achievable Tx-Rx separation distance for a PER threshold level of 10% according to the digital short-range communications (DSRC) specifications. The results reported here can be incorporated in an easy way to vehicular networks (VANETs) simulators in order to develop, evaluate and validate new protocols and systems architecture configurations under realistic propagation conditions.Fernández González, HA.; Rubio Arjona, L.; Reig, J.; Rodrigo Peñarrocha, VM.; Valero-Nogueira, A. (2013). Path loss modeling for vehicular system performance and communicaitons protocols evaluation. Mobile Networks and Applications. 18(6):755-765. doi:10.1007/s11036-013-0463-xS755765186Gallager B, Akatsuka H, Suzuki H (2006) Wireless communications for vehicle safety: radio link performance and wireless connectivity. IEEE Veh Technol Mag 1(4):4–24Rubio L, Reig J, Fernández H (2011) Propagation aspects in vehicular networks, Vehicular technologies. Almeida M (ed) InTechWang C-X, Vasilakos A, Murch R, Shen SGX, Chen W, Kosch T (2011) Guest editorial. Vehicular communications and networks – part I. IEEE J Select Areas Commun 29(1):1–6ASTM E2213-03 (2003) Standard specification for telecommunications and information exchange between roadside and vehicle systems – 5 GHz band Dedicated Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) specifications. American Society for Testing Materials (ASTM), West ConshohockenIEEE 1609 – Family of Standards for Wireless Access in Vehicular Environments (WAVE). [Online]. Available: http://www.standards.its.dot.govETSI TR 102 492–2 Part 2 (2006) Technical characteristics for Pan European Harminized Communications Equipment Operating in the 5 GHz frequency range intended for road safety and traffic management, and for non-safety related ITS applications, European Telecommunications Standard Institute (ETSI), Technical Report, Sophia Antipolis, FranceThe Car-to-Car Communication Comsortium (C2CC): http:/www.car-to-car.orgMecklenbräuker C, Molisch A, Karedal J, Tufvesson F, Paier A, Bernado L, Zemen T, Klemp O, Czink N (2011) Vehicular channel characterization and its implications for wireless system design and performance. IEEE Proc 99(7):1189–1212Ghafoor KZ, Bakar KA, Lloret J, Khokhar RH, Lee KC (2013) Intelligent beaconless geographical routing for urban vehicular environments. Int J Wireless Netw 19(3):345–362Ghafoor KZ, Lloret J, Bakar KA, Sadiq AS, Mussa SAB (2013) Beaconing approaches in vehicular ad hoc networks: a survey. Int J Wirel Pers Commun. Published Online (May 2013)Michelson DG, Ghassemzadeh SS (2009) New directions in wireless communications, Springer Science+Busines Media (Chapter 1)IEEE 802.11p (2010) Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments, Institute of Electrical and Electronic Engineers (IEEE), New York, USA.Karedal J, Czink N, Paier A, Tufvesson F, Moisch AF (2011) Path loss modeling for vehicle-to-vehicle communications. IEEE Trans Veh Technol 60(1):323–327Cheng L, Henty B, Stancil D, Bai F, Mudalige P (2007) Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short range communication (DSRC) frequency band. IEEE J Select Areas Commun 25(8):1501–1516Cheng L, Henty B, Cooper R, Stancil D, Bai F (2008) Multi-path propagation measurements for vehicular networks at 5.9 GHz. IEEE Wireless Communications and Networking Conference, pp. 1239–1244Tan I, Tang W, Laberteaux K, Bahai N (2008) Measurement and analysis of wireless channel impairments in dsrc vehicular communications. IEEE International Conference on Communications, pp. 4882–4888.Campuzano AJ, Fernández H, Balaguer D, Vila-Jiménez A, Bernardo-Clemente B, Rodrigo-Peñarrocha VM, Reig J, Valero-Nogueira A, Rubio L (2012) Vehicular-to-vehicular channel characterization and measurement results. WAVES 4(1):14–24Kunisch J, Pamp J (2008) Wideband car-to-car radio channel measurements and model at 5.9 GHz. IEEE 68th Vehicular Technology Conference, pp. 1–5Gozalvez J, Sepulcre M (2007) Opportunistic technique for efficient wireless vehicular communications. IEEE Veh Technol Mag 2(4):33–39Zang Y, Stibor L, Orfanos G, Guo S, Reumerman H (2005) An error model for inter-vehicle communications in highway scenarios at 5.9 GHz. Proc. Int. Workshop on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks, pp. 49–5

    An Intelligent Transportation System Application for Smartphones Based on Vehicle Position Advertising and Route Sharing in Vehicular Ad-Hoc Networks

    Full text link
    [EN] Alerting drivers about incoming emergency vehicles and their routes can greatly improve their travel times in congested cities, while reducing the risk of accidents due to distractions. This paper contributes to this goal by proposing Messiah, an Android application capable of informing regular vehicles about incoming emergency vehicles like ambulances, police cars and fire brigades. This is made possible by creating a network of vehicles capable of directly communicating between them. The user can, therefore, take driving decisions in a timely manner by considering incoming alerts. Using the support of our GRCBox hardware, the application can rely on vehicular ad-hoc network communications in the 5 GHz band, being V2V (vehicle-to-vehicle) communication provided through a combination of Android-based smartphone and our GRCBox device. The application was tested in three different scenarios with different levels of obstruction, showing that it is capable of providing alerts up to 300 meters, and notifying vehicles within less than one secondThis work was partially supported by the "Ministerio de Economia y Competividad, Programa Estatal de Investigacion, Desarollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014", Spain, under Grant Nos. TEC2014-52690-R and BES-2015-075988.Hadiwardoyo, SA.; Patra, S.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2018). An Intelligent Transportation System Application for Smartphones Based on Vehicle Position Advertising and Route Sharing in Vehicular Ad-Hoc Networks. Journal of Computer Science and Technology. 33(2):249-262. https://doi.org/10.1007/s11390-018-1817-4S249262332Papadimitratos P, De La Fortelle A, Evenssen K, Brignolo R, Cosenza S. Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation. IEEE Communications Magazine, 2009, 47(11): 84-95.Gerla M, Kleinrock L. Vehicular networks and the future of the mobile Internet. Computer Networks, 2011, 55(2): 457-469.Vegni A M, Loscrí V. A survey on vehicular social networks. IEEE Communications Surveys & Tutorials, 2015, 17(4): 2397-2419.Eze E C, Zhang S J, Liu E J. Vehicular ad hoc networks (VANETs): Current state, challenges, potentials and way forward. In Proc. the 20th Int. Conf. Automation and Computing, September 2014, pp.176-181.Qi L. Research on intelligent transportation system technologies and applications. In Proc. Workshop on Power Electronics and Intelligent Transportation System, August 2008, pp.529-531.Gozalvez J. First Google’s Android phone launched [Mobile Radio]. IEEE Vehicular Technology Magazine, 2008, 3(4): 3-69.Haklay M,Weber P. OpenStreetMap: User-generated street maps. IEEE Pervasive Computing, 2008, 7(4): 12-18.Hadiwardoyo S A, Patra S, Calafate C T, Cano J C, Manzoni P. An Android ITS driving safety application based on vehicle-to-vehicle (V2V) communications. In Proc. the 26th Int. Conf. Computer Communication and Networks, July 31-August 3, 2017.Eriksson J, Balakrishnan H, Madden S. Cabernet: Vehicular content delivery using WiFi. In Proc. the 14th ACM Int. Conf. Mobile Computing and Networking, September 2008, pp.199-210.Gerla M, Weng J T, Giordano E, Pau G. Vehicular testbeds-validating models and protocols before large scale deployment. In Proc. Int. Conf. Computing Networking and Communications, January 30-February 2, 2012, pp.665-669.Wahlström J, Skog I, Händel P. Smartphone-based vehicle telematics: A ten-year anniversary. IEEE Trans. Intelligent Transportation Systems, 2017, 18(10): 2802-2825.Whipple J, Arensman W, Boler M S. A public safety application of GPS-enabled smartphones and the Android operating system. In Proc. IEEE Int. Conf. Systems Man and Cybernetics, October 2009, pp.2059-2061.Meseguer J E, Calafate C T, Cano J C, Manzoni P. DrivingStyles: A smartphone application to assess driver behavior. In Proc. IEEE Symp. Computers and Communications, July 2013, pp.000535-000540.You C W, Lane N D, Chen F L, Wang R, Chen Z Y, Bao T J, Montes-De-Oca M, Cheng Y T, Lin M, Torresani L, Campbell A T. CarSafe app: Alerting drowsy and distracted drivers using dual cameras on smartphones. In Proc. the 11th Annual Int. Conf. Mobile Systems Applications and Services, June 2013, pp.461-462.Patra S, Arnanz J H, Calafate C T, Cano J C, Manzoni P. EYES: A novel overtaking assistance system for vehicular networks. In Proc. the 14th Int. Conf. Ad-Hoc Networks and Wireless, June 2015, pp.375-389.Togneri M C, Deriaz M. On-board navigation system for smartphones. In Proc. Int. Conf. Indoor Positioning and Indoor Navigation, October 2013.Dancu A, Franjcic Z, Fjeld M. Smart flashlight: Map navigation using a bike-mounted projector. In Proc. the SIGCHI Conf. Human Factors in Computing Systems, April 2014, pp.3627-3630.Yamabe T, Ikegami S, Ishizaki A, Kitagami S, Kiyohara R. Car navigation user interface based on a smartphone. In Proc. the 7th Int. Conf. Mobile Computing and Ubiquitous Networking, January 2014, pp.85-86.Matsuyama S, Yamabe T, Takahashi N, Kiyohara R. Intelligent user interface of smartphones for on-vehicle information devices. Procedia Computer Science, 2014, 35: 1635-1643.Kovacevic B, Kovacevic M, Maruna T, Papp I. A java application programming interface for in-vehicle infotainment devices. IEEE Trans. Consumer Electronics, 2017, 63(1): 68-76.Liu R L, Liu H Z, Kwak D, Xiang Y, Borcea C, Nath B, Iftode L. Themis: A participatory navigation system for balanced traffic routing. In Proc. IEEE Vehicular Networking Conf., December 2014, pp.159-166.Liu R L, Liu H Z, Kwak D, Xiang Y, Borcea C, Nath B, Iftode L. Balanced traffic routing: Design, implementation, and evaluation. Ad Hoc Networks, 2016, 37: 14-28.Vochin M, Zoican S, Borcoci E. Intelligent system for vehicle navigation assistance. In Proc. World Conf. Information Systems and Technologies, April 2017, pp.142-148.Sha W J, Kwak D, Nath B, Iftode L. Social vehicle navigation: Integrating shared driving experience into vehicle navigation. In Proc. the 14th Workshop on Mobile Computing Systems and Applications, February 2013, Article No. 16.Kwak D, Liu R L, Kim D, Nath B, Iftode L. Seeing is believing: Sharing real-time visual traffic information via vehicular clouds. IEEE Access, 2016, 4: 3617-3631.Djajadi A, Putra R J. Inter-cars safety communication system based on Android smartphone. In Proc. IEEE Conf. Open Systems, October 2014, pp.12-17.Dorairaj P, Mohammed A, Grbic N. Location-Aware services using Android mobile operating platform for safety, emergency and health applications. In Mobile Health, Adibi S (ed.), Springer, 2015, pp.283-298.Dorairaj P, Ramamoorthy S, Ramalingam A K. Emergency based remote collateral tracking system using Google’s Android mobile platform. In Advances in Computer Science Engineering & Applications, Wyld D C, Zizka J, Nagamalai D (eds.), Springer, 2012, pp.391-403.Zulkafi A Z, Basri S, Jung L T, Ahmad R. Android based car alert system. In Proc. the 3rd Int. Conf. Computer and Information Sciences, August 2016, pp.501-506.Tornell S M, Calafate C T, Cano J C, Manzoni P, Fogue M, Martinez F J. Evaluating the feasibility of using smartphones for ITS safety applications. In Proc. the 77th IEEE Vehicular Technology Conf., June 2013.Tornell S M, Patra S, Calafate C T, Cano J C, Manzoni P. GRCBox: Extending smartphone connectivity in vehicular networks. International Journal of Distributed Sensor Networks, 2015, 2015: Article No. 5.Mirkovic J, Dietrich S, Dittrich D, Reiher P. Internet Denial of Service: Attack and Defense Mechanisms (Radia Perlman Computer Networking and Security). Prentice Hall PTR, 2004.Chen S, Xu J, Sezer E C, Gauriar P, Iyer R K. Non-control-data attacks are realistic threats. In Proc. the 14th Conf. USENIX Security Symp., July 31-August 5, 2005.Fung C K, Lee M C. A denial-of-service resistant public-key authentication and key establishment protocol. In Proc. the 21st IEEE Int. Performance Computing and Communications Conf., April 2002, pp.171-178.Abadi M, Budiu M, Erlingsson Ú, Ligatti J. Control-flow integrity. In Proc. the 12th ACM Conf. Computer and Communications Security, November 2005, pp.340-353
    • …
    corecore